Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Front Microbiol ; 15: 1367062, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572235

RESUMO

The Yangtze River estuary (YRE) are strongly influenced by the Kuroshio and terrigenous input from rivers, leading to the formation of distinct water masses, however, there remains a limited understanding of the full extent of this influence. Here the variation of water masses and bacterial communities of 58 seawater samples from the YRE and its adjacent waters were investigated. Our findings suggested that there were 5 water masses in the studied area: Black stream (BS), coastal water in the East China Sea (CW), nearshore mixed water (NM), mixed water in the middle and deep layers of the East China Sea (MM), and deep water blocks in the middle of the East China Sea (DM). The CW mass harbors the highest alpha diversity across all layers, whereas the NM mass exhibits higher diversity in the surface layer but lower in the middle layers. Proteobacteria was the most abundant taxa in all water masses, apart from that, in the surface layer masses, Cyanobacterium, Bacteroidota, and Actinobacteriota were the highest proportion in CW, while Bacteroidota and Actinobacteriota were the highest proportion in NM and BS; in the middle layer, Bacteroidota and Actinobacteriota were dominant phylum in CW and BS masses, but Cyanobacterium was main phylum in NM mass; in the bottom layer, Bacteroidota and Actinobacteriota were the dominant phylum in CW, while Marininimicrobia was the dominated phylum in DM and MM masses. Network analysis suggests water masses have obvious influence on community topological characteristics, moreover, community assembly across masses also differ greatly. Taken together, these results emphasized the significant impact of water masses on the bacterial composition, topological characteristics and assembly process, which may provide a theoretical foundation for predicting alterations in microbial communities within estuarine ecosystems under the influence of water masses.

2.
Int J Med Sci ; 21(5): 826-836, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617014

RESUMO

Respiratory infectious diseases have long been recognised as a substantial global healthcare burden and are one of the leading causes of death worldwide, particularly in vulnerable individuals. In the post COVID-19 era, there has been a surge in the prevalence of influenza virus A and other multiple known viruses causing cold compared with during the same period in the previous three years, which coincided with countries easing COVID-19 restrictions worldwide. This article aims to review community-acquired respiratory illnesses covering a broad spectrum of viruses, bacteria, and atypical microorganisms and focuses on the cluster prevalence of multiple known respiratory pathogens in China, thereby providing effective prevention and control measures.


Assuntos
COVID-19 , Infecções Respiratórias , Humanos , Infecções Respiratórias/epidemiologia , COVID-19/epidemiologia , China
3.
BMC Palliat Care ; 23(1): 102, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38627698

RESUMO

BACKGROUND: Advanced cancer patients with good Eastern Cooperative Oncology Group (ECOG) performance status (score 0-1) are underrepresented in current qualitative reports compared with their dying counterparts. AIM: To explore the experiences and care needs of advanced cancer patients with good ECOG. DESIGN: A qualitative phenomenological approach using semi-structured interview was employed. Data was analyzed using the Colaizzi's method. SETTING/PARTICIPANTS: Purposive sample of terminal solid cancer patients on palliative care aged 18-70 years with a 0-1 ECOG score were recruited from a tertiary general hospital. RESULTS: Sixteen participants were interviewed. Seven themes were generated from the transcripts, including experiencing no or mild symptoms; independence in self-care, decision-making, and financial capacity; prioritization of cancer growth suppression over symptom management; financial concerns; hope for prognosis and life; reluctance to discuss death and after-death arrangements; and use of complementary and alternative medicine (CAM) and religious coping. CONCLUSIONS: Advanced cancer patients with good ECOG have distinct experiences and care needs from their dying counterparts. They tend to experience no or mild symptoms, demonstrate a strong sense of independence, and prioritize cancer suppression over symptom management. Financial concerns were common and impact their care-related decision-making. Though being hopeful for their prognosis and life, many are reluctant to discuss death and after-death arrangements. Many Chinese patients use herbal medicine as a CAM modality but need improved awareness of and accessibility to treatment options. Healthcare professionals and policy-makers should recognize their unique experiences and needs when tailoring care strategies and policies.


Assuntos
Neoplasias , Humanos , Neoplasias/terapia , Cuidados Paliativos , Prognóstico , Autocuidado , Pesquisa Qualitativa
4.
Endocrinology ; 165(5)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38492235

RESUMO

CONTEXT: Obesity is a risk factor for the development of papillary thyroid cancer (PTC). However, the molecular mechanisms by which obesity promotes PTC are unclear. OBJECTIVE: This study aims to identify adipokines that are linked to PTC progression. METHODS: An adipokine antibody array was used to determine the serum levels of 40 adipokines in normal-weight and obese PTC patients. Enzyme-linked immunosorbent assay was used to determine the serum levels of adiponectin. Recombinant human adiponectin was produced by human adipose-derived stem cells and used to treat PTC cells. Cell proliferation and migration were evaluated using the CCK8 and Transwell assays. Bioinformatics analysis was used to predict mechanisms by which adiponectin affects PTC. RESULTS: Adipokines differentially expressed between normal-weight and obese patients showed a gender-dependent pattern. Obese PTC patients had a significantly lower serum adiponectin level than normal-weight patients, especially in female individuals. Adiponectin levels were negatively correlated with aggressive features of PTC, including tumor diameter > 1 cm, extrathyroidal extension, and lymph node metastasis. Recombinant human adiponectin inhibited the proliferation and migration of human PTC cells in vitro. Bioinformatics analysis identified adiponectin receptor 2 (ADIPOR2) and the autophagy pathway as possible mediators of adiponectin function in TC. In vitro experiments confirmed that adiponectin activated autophagy in PTC cells. These findings shed new lights into the role and mechanisms of adiponectin in TC pathogenesis. CONCLUSION: Adiponectin is involved in development of obesity-related PTC. Adiponectin can directly inhibit thyroid cancer growth and metastasis through the autophagy pathway.


Assuntos
Carcinoma Papilar , Neoplasias da Glândula Tireoide , Feminino , Humanos , Adipocinas , Adiponectina , Autofagia , Carcinoma Papilar/metabolismo , Carcinoma Papilar/patologia , Linhagem Celular Tumoral , Proliferação de Células , Obesidade/complicações , Câncer Papilífero da Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia
5.
Microbiol Res ; 283: 127693, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38490029

RESUMO

This study evaluated the effects of Bacillus subtilis BSXE-1601, applied either as dietary supplementation or water addition, on growth performance, immune responses, disease resistance of Penaeus vannamei, and microbiota in shrimp gut and rearing water. During the 42-day feeding experiment, shrimp were fed with basal diet (CO and BW group), basal diet supplemented with live strain BSXE-1601 at the dose of 1 × 109 CFU kg-1 feed (BD group) and 15 mg kg-1 florfenicol (FL group), and basal diet with strain BSXE-1601 added to water at the concentration of 1 × 107 CFU L-1 every five days (BW group). Results showed that dietary supplementation of strain BSXE-1601 significantly promoted growth performance of shrimp, both in the diet and water, enhanced disease resistance against Vibrio parahaemolyticus (P < 0.05). The BD and BW groups exhibited significant increases in acid phosphatase, alkaline phosphatase, lysozyme, peroxidase, superoxide dismutase activities, phenonoloxidase content in the serum of shrimp compared to the control (P < 0.05). Meanwhile, the expression of immune-related genes proPO, LZM, SOD, LGBP, HSP70, Imd, Toll, Relish, TOR, 4E-BP, eIF4E1α, eIF4E2 were significantly up-regulated compared to the control (P < 0.05). When added in rearing water, strain BSXE-1601 induced greater immune responses in shrimp than the dietary supplement (P < 0.05). Chao1 and Shannon indices of microbiota in rearing water were significantly lower in BD group than in the control. The microbiota in rearing water were significantly altered in BD, BW and FL groups compared to the control, while no significant impacts were observed on the microbiota of shrimp gut. When supplemented into the feed, strain BSXE-1601 obviously reduced the number of nodes, edges, modules in the ecological network of rearing water. The results suggested that dietary supplementation of BSXE-1601 could be more suitable than water addition in the practice of shrimp rearing when growth performance, non-specific immunity, disease resistance against V. parahaemolyticus in shrimp were collectively considered.


Assuntos
Microbiota , Penaeidae , Animais , Resistência à Doença , Bacillus subtilis , Imunidade Inata , Ração Animal/análise , Suplementos Nutricionais/análise
6.
Brain Behav Immun ; 117: 80-99, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38190982

RESUMO

Emerging studies have demonstrated spinal microglia play a critical role in central sensitization and contribute to chronic pain. Although several mediators that contribute to microglia activation have been identified, the mechanism of microglia activation and its functionally diversified mechanisms in pathological pain are still unclear. Here we report that injured sensory neurons-derived Galectin-3 (Gal3) activates and reprograms microglia in the spinal dorsal horn (SDH) and contributes to neuropathic pain. Firstly, Gal3 is predominantly expressed in the isolectin B4 (IB4)-positive non-peptidergic sensory neurons and significantly up-regulated in dorsal root ganglion (DRG) neurons and primary afferent terminals in SDH in the partial sciatic nerve ligation (pSNL)-induced neuropathic pain model. Gal3 knockout (Gal3 KO) mice showed a significant decrease in mechanical allodynia and Gal3 inhibitor TD-139 produced a significant anti-allodynia effect in the pSNL model. Furthermore, pSNL-induced microgliosis was compromised in Gal3 KO mice. Additionally, intrathecal injection of Gal3 produces remarkable mechanical allodynia by direct activation of microglia, which have enhanced inflammatory responses with TNF-α and IL-1ß up-regulation. Thirdly, using single-nuclear RNA sequencing (snRNA-seq), we identified that Gal3 targets microglia and induces reprogramming of microglia, which may contribute to neuropathic pain establishment. Finally, Gal3 enhances excitatory synaptic transmission in excitatory neurons in the SDH via microglia activation. Our findings reveal that injured sensory neurons-derived Gal3 programs microglia in the SDH and contribute to neuropathic pain.


Assuntos
Galectina 3 , Neuralgia , Animais , Camundongos , Galectina 3/genética , Hiperalgesia , Microglia , Células Receptoras Sensoriais
7.
Allergy ; 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38164798

RESUMO

BACKGROUND: Itch is the most common symptom of atopic dermatitis (AD) and significantly decreases the quality of life. Skin microbiome is involved in AD pathogenesis, whereas its role in the regulation of itch remains elusive. In this study, we aimed to investigate the effects of skin microbial metabolite propionate on acute and chronic pruritus and to explore the mechanism. METHODS: Using various mouse models of itch, the roles of propionate were explored by behavioral tests and histopathology/immunofluorescent analysis. Primary-cultured dorsal root ganglion neurons and HEK293 cells expressing recombinant human TRP channels were utilized for in vitro calcium imaging/in vivo miniature two-photon imaging in combination with electrophysiology and molecular docking approaches for investigation of the mechanism. RESULTS: Propionate significantly alleviated itch and alloknesis in various mouse models of pruritus and AD and decreased the density of intraepidermal nerve fibers. Propionate reduced the responsiveness of dorsal root ganglion neurons to pruritogens in vitro, attenuated the hyper-excitability in sensory neurons in MC903-induced AD model, and inhibited capsaicin-evoked hTRPV1 currents (IC50 = 20.08 ± 1.11 µM) via interacting with the vanilloid binding site. Propionate also decreased the secretion of calcitonin gene-related peptide by nerves in MC903-induced AD mouse model, which further attenuated itch and skin inflammation. CONCLUSION: Our study revealed a protective effect of propionate against persistent itch through direct modulation of sensory TRP channels and neuropeptide production in neurons. Regulation of itch via the skin microbiome might be a novel strategy for the treatment of AD.

8.
Nat Commun ; 15(1): 666, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38253587

RESUMO

Keen desires for artificial mimicry of biological polymers and property improvement of synthesized ones have triggered intensive explorations for sequence-controlled copolymerization. However, conventional synthesis faces great challenges to achieve this goal due to the strict requirements on reaction kinetics of comonomer pairs and tedious synthetic processes. Here, sequence-controlled alternating copolymerization with molecular precision is realized on surface. The stoichiometric control serves as a thermodynamic strategy to steer the polymerization selectivity, which enables the selective alternating organometallic copolymerization via intermolecular metalation of 4,4"-dibromo-p-terphenyl (P-Br) and 2,5-diethynyl-1,4-bis(phenylethynyl)benzene (A-H) with Ag adatoms on Ag(111) at P-Br: A-H = 2, as verified by scanning tunneling microscopy and density functional theory studies. In contrast, homopolymerization yield increases as the stoichiometric ratio deviates from 2. The microscopic characterizations rationalize the mechanism, providing a delicate explanation of the stoichiometry-dependent polymerization. These findings pave a way to actualizing an efficient sequence control of copolymerization by surface chemistry.

9.
Front Endocrinol (Lausanne) ; 14: 1301838, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075061

RESUMO

Background: A multitude of anatomical variations have been noted in the external branch of the superior laryngeal nerve (EBSLN). In this study, intraoperative neuromonitoring (IONM) was used to assess the potential value of the different classical EBSLN classifications for predicting the risk of EBSLN injury. Methods: In total, 136 patients with thyroid nodules were included in this prospective cohort study, covering 242 nerves at risk (NAR). The EBSLN was identified by observing the cricothyroid muscle twitch and/or typical electromyography (EMG) biphasic waveform. The EBSLNs were classified by Cernea classification, Kierner classification, and Friedman classification, respectively. The EMG parameters and outcomes of vocal acoustic assessment were recorded. Results: The distribution of Cernea, Kiernea, and Friedman subtypes were, respectively, Cernea 1 (40.9%), Cernea 2A (45.5%), Cernea 2B (10.7%), Kierner 1 (40.9%), Kierner 2 (45.5%), Kierner 3 (10.7%), Kierner 4 (2.9%) and Friedman 1 (15.7%), Friedman 2 (33.9%), Friedman 3 (50.4%). The amplitudes of EBSLN decreased significantly after superior thyroid pole operation, respectively, in Cernea 2A (193.7 vs. 226.6µV, P=0.019), Cernea 2B (185.8 vs. 221.3µV, P=0.039), Kierner 2 (193.7vs. 226.6µV, P=0.019), Kierner 3 (185.8 vs. 221.3µV, P=0.039), Kierner 4 (126.8vs. 226.0µV, P=0.015) and Friedman type 2 (184.8 vs. 221.6µV, P=0.030). There were significant differences in Fmax and Frange for Cernea 2A (P=0.001, P=0.001), 2B (P=0.001, P=0.038), Kierner 2 (P=0.001), Kierner 3 (P=0.001, P=0.038), and Friedman 2 (P=0.004, P=0.014). In the predictive efficacy of EBSLN injury, the Friedman classification showed higher accuracy (69.8% vs. 44.3% vs. 45.0%), sensitivity (19.5% vs. 11.0% vs. 14.0%), and specificity (95.6% vs. 89.9% vs. 89.9%) than the Cernea and Kierner classifications. However, the false negative rate of Friedman classification was significantly higher than other subtypes (19.5% vs. 11.0% vs. 14.0%). Conclusion: Cernea 2A and 2B; Kierner 2, 3, and 4; and Friedman 2 were defined as the high-risk subtypes of EBSLN. The risk prediction ability of the Friedman classification was found to be superior compared to other classifications.


Assuntos
Traumatismos do Nervo Laríngeo , Glândula Tireoide , Humanos , Glândula Tireoide/cirurgia , Tireoidectomia/efeitos adversos , Estudos Prospectivos , Monitorização Intraoperatória , Nervos Laríngeos/fisiologia , Traumatismos do Nervo Laríngeo/etiologia , Fatores de Risco
10.
Heliyon ; 9(12): e22496, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38076181

RESUMO

The study investigates the relationship between green production, green technology, waste reduction, energy use, and sustainability. A Partial Least Squares Structural Equation Modeling (PLS-SEM) approach was used for analysis. The data was collected from a sample of companies in the textile industry. The results suggest that green production and technology positively and significantly affect waste reduction and energy use, which mediates the positive relationship between these two factors and sustainability. This study concludes that green production and technology are critical drivers of sustainability and emphasizes the need to prioritize waste reduction and energy use in sustainable manufacturing practices. The study has practical and managerial implications in all production or manufacturing industries and provides a guideline for managers and policymakers to ensure sustainability.

11.
Artigo em Inglês | MEDLINE | ID: mdl-37988208

RESUMO

Neural Architecture Search (NAS), aiming at automatically designing neural architectures by machines, has been considered a key step toward automatic machine learning. One notable NAS branch is the weight-sharing NAS, which significantly improves search efficiency and allows NAS algorithms to run on ordinary computers. Despite receiving high expectations, this category of methods suffers from low search effectiveness. By employing a generalization boundedness tool, we demonstrate that the devil behind this drawback is the untrustworthy architecture rating with the oversized search space of the possible architectures. Addressing this problem, we modularize a large search space into blocks with small search spaces and develop a family of models with the distilling neural architecture (DNA) techniques. These proposed models, namely a DNA family, are capable of resolving multiple dilemmas of the weight-sharing NAS, such as scalability, efficiency, and multi-modal compatibility. Our proposed DNA models can rate all architecture candidates, as opposed to previous works that can only access a sub- search space using heuristic algorithms. Moreover, under a certain computational complexity constraint, our method can seek architectures with different depths and widths. Extensive experimental evaluations show that our models achieve state-of-the-art top-1 accuracy of 78.9% and 83.6% on ImageNet for a mobile convolutional network and a small vision transformer, respectively. Additionally, we provide in-depth empirical analysis and insights into neural architecture ratings. Codes available: https://github.com/changlin31/DNA.

12.
Proc Natl Acad Sci U S A ; 120(34): e2221228120, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37590415

RESUMO

Developing green heterogeneous catalysts with excellent Fenton-like activity is critical for water remediation technologies. However, current catalysts often rely on toxic transitional metals, and their catalytic performance is far from satisfactory as alternatives of homogeneous Fenton-like catalysts. In this study, a green catalyst based on Zn single-atom was prepared in an ammonium atmosphere using ZIF-8 as a precursor. Multiple characterization analyses provided evidence that abundant intrinsic defects due to the edge sites were created, leading to the formation of a thermally stable edge-hosted Zn-N4 single-atom catalyst (ZnN4-Edge). Density functional theory calculations revealed that the edge sites equipped the single-atom Zn with a super catalytic performance, which not only promoted decomposition of peroxide molecule (HSO5-) but also greatly lowered the activation barrier for •OH generation. Consequently, the as-prepared ZnN4-Edge exhibited extremely high Fenton-like performance in oxidation and mineralization of phenol as a representative organic contaminant in a wide range of pH, realizing its quick detoxification. The atom-utilization efficiency of the ZnN4-Edge was ~104 higher than an equivalent amount of the control sample without edge sites (ZnN4), and the turnover frequency was ~103 times of the typical benchmark of homogeneous catalyst (Co2+). This study opens up a revolutionary way to rationally design and optimize heterogeneous catalysts to homogeneous catalytic performance for Fenton-like application.

13.
J Am Chem Soc ; 145(34): 18748-18752, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37606281

RESUMO

In this study, single Ni2 clusters (two Ni atoms bridged by a lattice oxygen) are successfully synthesized on monolayered CuO. They exhibit a remarkable activity toward low-temperature CO2 thermal dissociation, in contrast to cationic Ni atoms that nondissociatively adsorb CO2 and metallic Ni ones that are chemically inert for CO2 adsorption. Density functional theory calculations reveal that the Ni2 clusters can significantly alter the spatial symmetry of their unoccupied frontier orbitals to match the occupied counterpart of the CO2 molecule and enable its low-temperature dissociation. This study may help advance single-cluster catalysis and exploit the unexcavated mechanism for low-temperature CO2 activation.

14.
Cell Rep ; 42(8): 112869, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37481722

RESUMO

Vascular smooth muscle cells (VSMCs) can transdifferentiate into macrophage-like cells in the context of sustained inflammatory injury, which drives vascular hyperplasia and atherosclerotic complications. Using single-cell RNA sequencing, we identify that macrophage-like VSMCs are the key cell population in mouse neointimal hyperplasia. Sex-determining region Y (SRY)-related HMG-box gene 10 (Sox10) upregulation is associated with macrophage-like VSMC accumulation and pyroptosis in vitro and in the neointimal hyperplasia of mice. Tumor necrosis factor α (TNF-α)-induced Sox10 lactylation in a phosphorylation-dependent manner by PI3K/AKT signaling drives transcriptional programs of VSMC transdifferentiation, contributing to pyroptosis. The regulator of G protein signaling 5 (RGS5) interacts with AKT and blocks PI3K/AKT signaling and Sox10 phosphorylation at S24. Sox10 silencing mitigates vascular inflammation and forestalls neointimal hyperplasia in RGS5 knockout mice. Collectively, this study shows that Sox10 is a regulator of vascular inflammation and a potential control point in inflammation-related vascular disease.


Assuntos
Músculo Liso Vascular , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Hiperplasia/patologia , Músculo Liso Vascular/metabolismo , Proliferação de Células/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piroptose , Fosfatidilinositol 3-Quinases/metabolismo , Transdiferenciação Celular , Neointima/metabolismo , Neointima/patologia , Camundongos Knockout , Inflamação/patologia , Miócitos de Músculo Liso/metabolismo , Células Cultivadas , Movimento Celular , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo
15.
J Environ Manage ; 342: 118336, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37327732

RESUMO

Understanding the spatial distribution and path tracing of eutrophication caused by nitrogen (N) enrichment in urban freshwater is crucial for whole-process and precise damage effect control. This study constructed a site-specific life cycle impact assessment (LCIA) model, covering the overall cause-effect chain from source emission to endpoint effect, to assess N-induced eutrophication potential at the species damage level. Applied to Guangzhou city, China, marked spatial disparities in eutrophication potential were derived, with higher values in the downtown areas driven by anthropogenic disturbances, such as wastewater discharge. Spatially differentiated measures were provided through eutrophication hotspot identification and driver tracking. This study offers a necessary complement for eutrophication impact category indicators in LCIA methodology and lays a scientific foundation for potential hotpots diagnosis and targeted mitigation policy-making.


Assuntos
Nitrogênio , Água , Nitrogênio/análise , Eutrofização , Água Doce , China , Fósforo/análise , Monitoramento Ambiental
16.
Cell Res ; 33(10): 775-789, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37311832

RESUMO

Nociceptive signals are usually transmitted to layer 4 neurons in somatosensory cortex via the spinothalamic-thalamocortical pathway. The layer 5 corticospinal neurons in sensorimotor cortex are reported to receive the output of neurons in superficial layers; and their descending axons innervate the spinal cord to regulate basic sensorimotor functions. Here, we show that a subset of layer 5 neurons receives spinal inputs through a direct spino-cortical circuit bypassing the thalamus, and thus define these neurons as spino-cortical recipient neurons (SCRNs). Morphological studies revealed that the branches from spinal ascending axons formed a kind of disciform structure with the descending axons from SCRNs in the basilar pontine nucleus (BPN). Electron microscopy and calcium imaging further confirmed that the axon terminals from spinal ascending neurons and SCRNs made functional synaptic contacts in the BPN, linking the ascending sensory pathway to the descending motor control pathway. Furthermore, behavioral tests indicated that the spino-cortical connection in the BPN was involved in nociceptive responses. In vivo calcium imaging showed that SCRNs responded to peripheral noxious stimuli faster than neighboring layer 4 cortical neurons in awake mice. Manipulating activities of SCRNs could modulate nociceptive behaviors. Therefore, this direct spino-cortical circuit represents a noncanonical pathway, allowing a fast sensory-motor transition of the brain in response to noxious stimuli.


Assuntos
Cálcio , Nociceptividade , Camundongos , Animais , Tálamo/anatomia & histologia , Tálamo/fisiologia , Neurônios
17.
Artigo em Inglês | MEDLINE | ID: mdl-37027761

RESUMO

Recently, tremendous human-designed and automatically searched neural networks have been applied to image denoising. However, previous works intend to handle all noisy images in a pre-defined static network architecture, which inevitably leads to high computational complexity for good denoising quality. Here, we present a dynamic slimmable denoising network (DDS-Net), a general method to achieve good denoising quality with less computational complexity, via dynamically adjusting the channel configurations of networks at test time with respect to different noisy images. Our DDS-Net is empowered with the ability of dynamic inference by a dynamic gate, which can predictively adjust the channel configuration of networks with negligible extra computation cost. To ensure the performance of each candidate sub-network and the fairness of the dynamic gate, we propose a three-stage optimization scheme. In the first stage, we train a weight-shared slimmable super network. In the second stage, we evaluate the trained slimmable super network in an iterative way and progressively tailor the channel numbers of each layer with minimal denoising quality drop. By a single pass, we can obtain several sub-networks with good performance under different channel configurations. In the last stage, we identify easy and hard samples in an online way and train a dynamic gate to predictively select the corresponding sub-network with respect to different noisy images. Extensive experiments demonstrate our DDS-Net consistently outperforms the state-of-the-art individually trained static denoising networks.

18.
Biosensors (Basel) ; 13(2)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36831925

RESUMO

The common fluorescent conjugated materials present weak or quenching luminescent phenomena in the solid or aggregate state (ACQ), which limits their applications in medicine and biology. In the last two decades, certain materials, named aggregation-induced emission (AIE) fluorescent materials, have exhibited strong luminescent properties in the aggregate state, which can overcome the ACQ phenomenon. Due to their intrinsic properties, the AIE materials have been successfully used in biolabeling, where they can not only detect the species of ions and their concentrations in organisms, but can also monitor the organisms' physiological activity. In addition, these kinds of materials often present non-biological toxicity. Thus, AIE materials have become some of the most popular biofluorescent probe materials and are attracting more and more attention. This field is still in its early infancy, and several open challenges urgently need to be addressed, such as the materials' biocompatibility, metabolism, and so on. Designing a high-performance AIE material for biofluorescent probes is still challenging. In this review, based on the molecular design concept, various AIE materials with functional groups in the biofluorescent probes are introduced, including tetrastyrene materials, distilbene anthracene materials, triphenylamine materials, and hexaphenylsilole materials. In addition, according to the molecular system design strategy, the donor-acceptor (D-A) system and hydrogen-bonding AIE materials used as biofluorescent probes are reviewed. Finally, the biofluorescent probe design concept and potential evolution trends are discussed. The final goal is to outline a theoretical scaffold for the design of high-performance AIE biofluorescent probes that can at the same time further the development of the applications of AIE-based biofluorescent probes.


Assuntos
Corantes Fluorescentes , Luminescência , Íons
19.
Int J Med Sci ; 20(1): 151-162, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36619228

RESUMO

The SARS-CoV-2 Omicron is currently the predominant circulating variant in the COVID-19 pandemic. The dominating Omicron sublineages respond to host immune pressure and develop advantageous mutations or genetic recombination, which result in variants that are more contagious or better at escaping immune responses in response to previous infection or vaccination. Meanwhile, multiple genetic recombination events have been reported in coinfection cases, the majority of which have resulted from the recombination between co-circulating Omicron BA.1 (or BA.1.1) and Delta variant or BA.2. Here, we review the knowledge and characterization of recombination for SARS-CoV-2 at the population level, provide an update on the occurrence of newly circulating Omicron sublineages, and discuss the effectiveness of novel vaccines/therapeutic drugs against the Omicron variant.


Assuntos
COVID-19 , Coinfecção , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Pandemias
20.
ACS Appl Mater Interfaces ; 15(3): 4549-4558, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36642888

RESUMO

3D printed silicones have demonstrated great potential in diverse areas by combining the advantageous physiochemical properties of silicones with the unparalleled design freedom of additive manufacturing. However, their low-temperature performance, which is of particular importance for polar and space applications, has not been addressed. Herein, a 3D printed silicone foam with unprecedented low-temperature elasticity is presented, which is featured with extraordinary fatigue resistance, excellent shape recovery, and energy-absorbing capability down to a low temperature of -60 °C after extreme compression (an intensive load of over 66000 times its own weight). The foam is achieved by direct writing of a phenyl silicone-based pseudoplastic ink embedded with sodium chloride as sacrificial template. During the water immersion process to create pores in the printed filaments, a unique osmotic pressure-driven shape morphing strategy is also reported, which offers an attractive alternative to traditional 4D printed hydrogels in virtue of the favorable mechanical robustness of the silicone material. The underlying mechanisms for shape morphing and low-temperature elasticity are discussed in detail.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA